#### PAV Pan Warping

Dr. David A. Anderson Professor Emeritus, Penn State

Karl Zipf Chief Chemist, Maryland DOT

Maria Knake Program Manager for Training and Technical Services, AMRL

> Presented at the Asphalt Binder ETG Fall River, Massachusetts September 12-13, 2016

#### Introduction

Reports of warped PAV pans have surfaced once again
 ✓ Long-standing issue

- One of reasons steel pans were specified (SHRP)
- Issue is recognized in ASTM but ASHTO quiet on this issue
- Pan dimensions are a left-over from TFO method
- Conclusion
  - Means for specifying and measuring allowable warping in PAV pans is needed
  - ✓ Pan dimensions need to be revisited
  - ✓ Levelness of PAV rack may also warrant attention

## Why do the pans warp?

Residual stresses created during manufacture ✓ Two processes – spinning and pressing ✓ In past was traced to manufacturer/process Expansion created during filling Caused by expansion of pan bottom as it is heated during filling ✓ Should be removed when pan comes to uniform temperature at room temperature or in PAV

Need to verify

# Pan warpage during filling





#### Why is levelness important?

The effect of PAV conditioning depends upon the thickness of the binder film

- "Aging" is diffusion controlled thus a non-linear function of thickness
  - "Aging" varies with the thickness squared
- Limited amount of published data available on effect of film thickness
  - Available data sufficient to set tentative tolerances for thickness and levelness
- Total effect is sum of pan warping and PAV rack levelness
  Need is a method for establishing warping and levelness in PAV rack

# Existing methods for measuring pan warpage

#### Spinning method

✓ Place pan on flat surface and manually spin pan

- ✓ If pan spins it is not level
- ✓ Qualitative therefore not definitive and hard to enforce

Method recommended in Asphalt Institute MS-25

- ✓ Simple and non-qualitative
- ✓ No limits given
- ✓ Good starting point for development
- ✓ Refine measurement technique and provide limits
  - Use existing data to establish limits

#### **Flatness - Check for Downward Bow**

- Press on one side of the pan
  - ✓ Opposite side should not raise by more than 0.2 mm
  - ✓ Rotate pan 90° and repeat

< 0.2 mm →

-7-

Note: Dimensions given will ensure film uniformity as required by test method. The test method does not require this procedure and its tolerances.

## **Flatness - Check for Upward Bow**

Invert and check for gap at center of pan

#### Straight edge

#### r < 0.2 mm

Not in test method: See note on previous slide

## TAI vs. suggested go-no go gage

1. Recommended in TAI MS-25

2. Suggested go-no go gage



**Glass Plate** 

**Glass Plate** 

Slide -9-

#### What about PAV rack levelness?

Obscure requirements given in initial version of test method Measured dimensions of rack ✓ Unrealistic and never enforced – since AASHTO and ASTM quiet on this issue Issue has been discussed periodically Currently under review by ASTM task force ✓ Varying rack design complicates measurement ✓ Levelness of oven not reliable Warping of vessel can affect rack levelness ✓ Probably less critical than pan levelness

## Where do we go from here?

- Update pan dimensions
- Establish tolerances based on data of aged property vs thickness
  - ✓ Additional data and existing data
- Manufacture prototype gages
  - Collect assortment of warped pans
  - ✓ Evaluate effectiveness of gage design
    - Apply to collected pans
- Continue to develop method for PAV
  - ✓ How critical is it?
  - ✓ Evaluate effect of vessel warpage as reported by some